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Arguments are presented which lead to the conclusion that SU(3,2) is the grand 
unification gauge group (GUGG). The gauge theory includes all known forces. 
We incorporated supersymmetry within the framework of the gauge theory and 
show how the theory may be quantized. 

1. THE GRAND UNIFICATION GAUGE GROUP 

The geometric formulation (Konopleva and Popov, 1981; Trautman, 
1979; Singer, 1980-81; Daniel and Viallet, 1980; Chatelet, 1981; Trautman, 
1980; Bleecker, 1981; Herman, 1975, 1977, 1978) of the classical theory of 
gauge fields requires a connection on a principle fiber bundle, P(M,G).  
The base space, M, should be space-time. Once a group is specified and the 
structure constants known, the standard theory provides recipes to follow 
for construction of the Lagrangian and other physical quantities. The group 
then (almost) determines the theory: 

If G = U(1) we obtain electromagnetic field theory. 
If G=U(1)xSU(2) ,  we obtain the Weinberg-Saiam theory of the 

weak and electromagnetic fields. 
If G--SU(3), we obtain quantum chromodynamics: a theory of the 

strong interactions. 
If G is the Lorentz group SO(3,1), we obtain a viable theory of 

gravitation (Kampfer, 1981; Borchsenius and Mann, 1981). 
Since all of the known forces can be obtained by gauging some group, 

is there one group which does it all? This is the idea behind grand 
unification theories (GUTs) (Langlacker, 1981). 

The grand unification schemes are intended to unify all the known 
forces by gauging one group. The first step taken in this direction was by 
Pati and Salam (1973), who gauged SU(4)• Georgi and Glashow 
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(1974) argued that the gauge group should be simple and nominated SU(5) 
as their candidate. Since then many groups have been suggested as candi- 
dates for the grand unification gauge group (Langlacker, 1981). All of these 
have one shortcoming: they do not yield gravitation. Two things they have 
in common are having H = SU(3)X SU(2)x U(1) as a subgroup and being 
compact. 

On the other hand many groups have been gauged to obtain something 
resembling gravitation (Bansobrio, 1980). The one thing all those groups 
have in common is the subgroup L, the Lorentz group. It is an interesting 
exercise to compare the list of groups used for unified model building 
(Slansky, 1981) with the list of those used to obtain gravitation (Bansobrio, 
1980). Their intersection is empty. Clearly further analysis is needed. Many 
particle physicists have expressed the opinion that, in the search for grand 
unified theories, gravitation can be ignored (to first-order approximation 
anyway). We do not agree with this point of view. Minkowski showed that 
Einstein's theory of special relativity implies that space and time must be 
fused together into one entity: space-time. The four-dimensional space-time 
is equipped with an indefinite inner product yielding a geometry radically 
different from Euclid's. The inclusion of gravity in a grand unified theory 
can be expected to produce changes in the geometry just as dramatic. 
Indeed, as we will see, this is exactly the case. Let us continue in our search 
for the grand unification gauge group. If the grand unification concept is 
valid the required group (3 will contain H and L. Since it contains L which is 
noncompact, (3 will be noncompact. In the symmetry breaking (3 ~ H the 
group H must be the maximal compact subgroup of (3 in order to avoid 
having ghosts in the theory (Cremmer and Julia, 1979). Thus we would like 
to have a real simple Lie Group which contains the Lorentz group and 
whose maximal compact subgroup is H. Barut and Raczka (1965) have 
tabulated all the groups containing the Lorentz group, according to the 
tables in (Gilmore, 1974), there is only one group which satisfies our 
requirements: SU(3,2), which has 12 noncompact generators and 12 com- 
pact generators (Helgason, 1978) (see Table I). The gauge group SU(5) has 
become the "standard model" since being introduced by Georgi and 
Glashow (1974). SU(3,2) and SU(5) are related by a "remarkable and 
important duality between the compact type and the noncompact type" of 
Lie algebra; see Helgason (1978, p. 235). This duality is known to physicists 
as the Weyl unitary trick (Gilmore, 1974). The Lie algebra SU(3,2) consists 
of matrices of the form 

with Z~, Z 3 skew Hermitean of order 3 and 2, respectively; Tr Z a + Tr Z 3 = 0. 
To get SU(5) we replace ' Z  2 by - ' Z  2. 
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TABLE I. Simple Groups Containing the Lorentz Group (Barut and Raczka, 1965) 
and Their Maximal Compact Subgroups (Gilmore, 1974) 
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SO( p, q) SO( p)x  SO(q) 
p.>.3, p>~q>~l 

SU(p, q) SU(p)x SU(q)x U(1) 
p>~3, p>~q>~l 

U(p, q) U(p)xU(q) 
p>~3, p>~3, p>~q>~l 

USp(2 p,2q) USp(2 p )x USq(2q) 
p>~3, p>~q>~l 

SL(p,c) p>~2 SU(p) 
SL(p, R) p >I 4 SO(p) 

Since SU(3,2) preserves the form 

1 
1 

1 
- 1  

- 1  

and SU(5) preserves the form with all positive l's, SU(5) is called the 
compact analog of SU(3,2).  

All of Georgi and Glashow's arguments which lead "inescapably to the 
conclusion that SU(5) is the gauge group of the world" are equally as valid 
for SU(3,2), except their requirement that the group be compact. For 
example, SU(3,2) (1) is of rank 4, (2) allows complex representations, (3) 
contains H, and (4) predicts a value of sin2O,~, which is in agreement with 
expected values. 

If, indeed, "we cannot unify weak and electromagnetic interactions 
independently of strong interactions," why should one expect to be able to 
exclude gravitation from a truly unified theory? Including gravitation re- 
quires including the Lorentz group which forces G to be noncompact. 
Surely this requirement overshadows Georgi and Glashow's reasons for 
looking at only compact Lie groups. Gauging SU(3,2) will yield all the 
known forces. 

Following Helgason, one possible parameterization of su(3, 2) is 

iYn xl2 + iYn xx3 + iY13 xt4 + iYx4 xl5 + iY15 

- x12 + iY12 iy22 x23 + iY23 x24 + iY24 x25 + iy25 

-- X13 q'- iYl3 -- X23 + iY23 iY33 X34 + iY34 X35 + iy35 

xl4 - iy14 x24 - iY24 X 3 4  - -  iY34 iy~ X45 + iy45 

Xls--iy15 Xzs--iY25 X35--iy35 --X45 +iy4~ - - i ( y n  + Y22 

+ Y33 + Y44) 
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The corresponding infinitesimal generators are 

0 
Y,j - (above matrix) [ .j = 0 

OYij 

XiJ - Ox,j (above matrix)[.~,j = 0 

The generators of SU(3) are the X~j, Y~j, i, j <~ 3, i § j ,  and Ylx - 1133, 
Y22 - Y33. The generators of SU(2) are the X,j, Y~j (i, j >1 4). The X,j alone 
generates SO(3,2) the de Sitter group. The X~j (i, j <~ 4) generate SO(3,1), 
the Lorentz group. Thus the X~j (i, j <~ 3) are simultaneously generators of 
the SU(3) and SO(3,1). This mixing is essential since the group SU(3,2) is 
simple. The diagonalized matrices are YI,, Y22, Y33, and Y,~. To obtain the 
standard diagonalizationsl we need to change the diagonal elements of the 

1 X3= 2[YH-- Y22] = 

basis to 

i 

i 
2 

0 
0 

0 

i 
3 

X8 = 3(Yxl + Yz2 - 2Y33) = 

i 
3 

2i 
3 

0 

'0 
0 

1 0 
i 
2 

Requiring that the fourth diagonal operator be orthogonal to all the above 
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via the Killing form, we obtain 

y =  i 
3 

i 
2 

i 

According to Weinberg (1979), the coupling constants for the strong, 
weak and electromagnetic forces are related by 

g~ZTr ~.% = g2Tr t~ = g'2Try2 

For the SU(3,2) model, we compute 

= gg  =  g,g 

hence agreeing with Weinberg's heuristic derivations. 
The SU(3)xSU(2)xU(1) content of SU(3,2) is exactly the same as 

SU(5); hence in the SU(3,2) theory we have 

sin20,, = 3 

at the grand unification energy. Since renormalization is done after the 
breaking to H, the coupling constants at ordinary energies are obtained in 
the standard way exactly as in the SU(5) theory. Since the SU(5) theory 
agrees with experiment, so does the SU(3, 2). 

We have imbedded the Lorentz algebra L into SU(3,2). The classic 
paper about such imbeddings is O'Raifeartaigh (1965). So naturally the 
question arises: What does O'Raifeartaigh say about this embedding? 

The Lie algebra su(3, 2) is semisimple, in fact, simple, hence the radical 
S of su(3,2) reduces to the zero element. Since S =  0, P n S = 0. This is 
O'Raifeartaigh's case (iv). He shows that L must be imbedded in a simple 
Lie algebra which we already have since su(3,2) is simple. 
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He goes on to say: "No  algebra belonging to case (iv) has been 
proposed in the literature cited ... case (iv) deserves some further investiga- 
tion," which is exactly what we are doing. 

2. THE GEOMETRY AND SYMMETRY BREAKING 

The geometrical setting of a principle fiber bundle will be denoted as 
G 

P ~ M = P / G ,  where P is the total space M is the base space, ~r is the 
qT 

projection, and the fibers are all diffeomorphic to G. The breaking of the 
symmetry from G to H changes the picture to 

H G / H  
P - - * P / H  ~ M 

~72 ~ffl 

Thus the breaking induces a new fiber bundle P / H ( G / H ,  M )  with base M 
and fiber the homogeneous space G / H .  

This is basically, the Higgs mechanism (Chaohao, 1981). The Higgs 
field is a Yang-Mills field with gauge group H on the principle fiber bundle 

t t  G / H  
P ~ P / H .  The bundle P / H  ~ M then describes the Higgs particles. If we 

go to tumbling gauge theories and have a further breaking to a subgroup 
H i < H we have the symmetry-breaking diagram 

H, H / H ,  G / H  
P ~ P / H  i --* P / H  --, M 

qri ~t2. t *tl 

The picture drawn so far has a serious defect: The base space M is put 
in by hand. This goes counter to our entire program of naturality. If we 
cannot remedy the situation, this entire line of thinking should be scrapped. 
After making two observations we will be ableto  proceed. 

Observation I. From the mathematical viewpoint, perhaps the most 
important lesson learned from quantum mechanics is the fundamental role 
that complex numbers play in our description of nature. Geometrically this 
leads to consideration of the complexification of the tangent space of a real 
manifold or all the way to complex manifolds (Wells, 1979). 

Observation H. In the geometric setting of soldered gauge theories 
(Giachetti, et al., 1982) one looks for a subgroup K < G = SU(3, 2) such that 
G / K  is locally isomorphic to the base space M. Thus we need a subalgebra 
K ' < G '  such that G ' / K "  is isomorphic to T~M. Thus K '  must be 20 
dimensional for M to be four dimensional. Furthermore, for the dynamics 
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of relativity we need that the Lorentz group L be contained in K '. There is 
no subalgebra of G' satisfying these requirements. 

We are now in a quandry. Gravitation is a soldered gauge theory 
(Trautman, 1982) so soldering must work if we have the correct group. 
SU(3,2) has too much going for it to be so easily abandoned. 

Here observation I comes into play. Suppose we allow the base space to 
be a complex space time can we then find a subalgebra K '  < G" satisfying 
our requirements? Now, miraculously, the answer is yes. What we want left 
is the last column of the representation in Section 1; i.e., we want Q = G'/K' 
to be generated by Xls, Y15, X25, Y25, X35, ]735, )(45, Y45 so we take K '  to be 
the subalgebra generated by everything else. K then turns out to be 
SU(3,1)• and another symmetric space enters the picture: M =  
SU(3,2)/SU(3,1)• Returning to the analogy of SU(3,2) with SU(5) 
we Euclideanize everything obtaining SU(5)/SU(4)• U(1)--P4(C) which 
shows why projective spaces have provided good models for field theory. 

The Killing form on Q has the correct signature to be a space-time 
since X45 and Y45 are generators of SU(2), hence compact, their scalar 
product is positive definite while the other generators are in the noncompact 
sector hence negative definite. 

Only one more thing to check we have the decomposition 

G '= K'~Q 

In order to utilize the results of soldering (Giachetti et al., 1982) we must 
have that this decomposition is reductive, i.e., that 

[K',Q] cQ 

An easy calculation shows this is indeed the case. 
Now the idea of soldering is to identify M with a section of an 

associated fiber bundle and use the connection on the PFB to determine the 
geometry of the section hence the geometry of M. The details of this 
program will be carried out in a future publication. 

We return to the principle fiber bundle P(M, G). Given a representa- 
tion p: G --, GL(V) with V a vector space, we can define an action of G on 
P •  by 

( p , f ) . g = ( p . g , p ( g - l ) f )  

If 

k: P •  E = ( P • 2 1 5  
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is the natural projection onto the quotient of the action of G, the set E has 
a natural vector bundle structure with typical fiber V. 

According to Trautman (1979), a particle of type p, interacting with the 
gauge field is described by a section of the bundle associated to P by p. The 
standard Higgs field corresponds to V= G' (the Lie algebra of G) and 
p = ad. 

The standard wisdom (Konopleva and Popov, 1981; Trautman, 1979; 
Singer, 1980-81; Daniel and Viallet, 1980; Chatelet, 1981; Trautman, 1980; 
Bleecker, 1981; Hermann, 1977, 1975, 1978) would lead us to write the 
Lagrangian of a particle of type p with a field as 

L~(o0, ~) = fMll ll2 +I lD,  o~,II 2 ( I )  

where ~ is the curvature of the connection o~ and ~ is a section of the 
bundle E as above. 

We will later see reasons for believing that the standard wisdom is 
wrong. The correction necessary will be shown to be very minor--just a 
reinterpretation of the symbol ~ in (1). 

Also, some theorists would include another term -m211~,ll 2 in the 
Lagrangian. When we get to quantization, we will require that I1~11 --1 so we 
omit this term now (it is unnecessary). 

In order to write down the Lagrangian (1), we require a representation 
of G = SU(3,  2). In this formalism, any vector space and any representation 
is allowable. Since each representation leads to a different Lagrangian and 
presumably describes a different particle, we have an infinite number of 
particles describable by this theory. This freedom to choose arbitrary 
representations seems too lax and very unnatural. 

As Trautman (1982) points out, this freedom of choice in representa- 
tion spaces is one of the biggest differences between the standard (gener- 
alized) Higgs-Yang-Mills gauge theories and gauge theories of gravitation 
and is one of the biggest stumbling blocks in the (gravitation included) 
grand unification schemes. Which representations are admissible? The num- 
ber of particles and their properties should be dictated by the theory not 
introduced by whim. Thus somehow the number of admissible representa- 
tion spaces should be limited naturally. The original Higgs description uses 
the adjoint representation of G on its Lie algebra G'. This is a natural 
representation. We extend this requirement of naturality: the representation 
spaces must occur naturally in the theory. 

One last requirement will fix the vector spaces: these spaces must 
naturally admit some interpretation of the symmetries and antisymmetries 
known to occur for wave functions. That is, V must be a subspace of a 
graded Lie algebra. 
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There is only one vector space which meets these requirements: 
A(M,G') ,  the space of G' valued forms on M: 

?/ 

A ( M , G ' ) =  ~ AV(M,G ') (2) 
p=O 

where n = dimension of M. 
A (M ,G ' )  is a graded Lie algebra. The sections ~ in (1) are cross 

sections of A(M,G' ) ,  i.e., Lie algebra valued forms. See, e.g., Bleecker 
(1981) for details. The Lie Algebra G' has a natural inner product which we 
can extend to A(M,G') .  

This requirement that the sections ~ be in A(M,G ' )  satisfies 
Trautman's objections and makes the theory compatible with his standard 
treatment of general relativity as a gauge theory since we already have a 
soldered gauge theory. 

The gauge group G acts on P and this action induces an action (a 
representation) of G on A V ( M , G ' ) .  Thus there is no need to separately 
introduce a representation p as in the "standard wisdom." The required 
representations come out of the geometry. They need not be put in by hand. 

Definition (Trautman, 1979). The connection form to and the A(M, G') 
valued form ~ are said to be compatible iff 

D~q~ = 0 (3) 

Theorem. If w and ~ are compatible, and if 

D~,*~ = 0 

then (to, ~) is a critical point of the Lagrangian (1). 

Proof. Write 

L - -  L 1 + L 2 

(4) 

t l  = fMII~II2 

L 2 = f M D ~ A * D j b  

Then (4) implies that the variation of L 1 with respect to w is zero: 

8~L 1 = 0 
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see Atiyah (1979) while 6,~. L2-" Y = fMD/pA*D,~ep + D,~cbA*D/p so (3) implies 
6,~L 2 = 0; hence (3) and (4) together imply 

~oL=0 
The variation with respect to q~ is 

s f D,~q,A*DJo + f D,~,A*D,~4, 

so (3) implies that 

8 , L = O  �9 

3. QUANTIZATION 

Arnold (1967) was the first to note that cohomology conditions were 
important in quantization. Other workers have introduced other cohomolo- 
gies in the setting of geometric quantization and field theory (Rawnsley, 
1979; Lichnerowicz, 1980). This is the motivation for what follows. 

Associated with the graded Lie algebra A(M, G'), we have the diagram 

A ~  2 - - * N - - - '  8 --* A --* A 4 (5) 

where 6 is some differential operator, yet to be determined. The diagram (5) 
is a complex iff 6 o 6 = 0. If 6 = d, we get the standard de Rham complex. If 
6 = D,~, the diagram (5) is not a complex since D,o ~ D,o r 0 in general. 

If however we consider the operator 60 = -[co, 0] we can make (5) into 
a complex (Ruchti, 1975). To make (5) a complex, we require 

[co,[co, O]] = 0  (6) 

So for which co does (6) hold? We use the graded Jacobi identity (Bleecker, 
1981, p. 36). 

For ~ ~ N(M,G) ,  ~ ~ AJ(M,G), P ~ Ak(M,G) we have 

[ + , , 1  = - ( -  1) 'J[ , ,  +] (7) 

(-1)'~[[~, ~], p] +(-1)~J[[p,r +(-1)J ' [[~,  p],o] = o (8) 

In (8) let ~ = p - co since co ~ A'(M, G') we obtain 

(-1)[[co, ~b], ~] + (-l)J [[~, ~], ~] + (-l)J [[~, co], co]--0 (9) 
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But by (6), the first and third terms of (9) vanish so (9) reduces to 

q,] = 0  (lO) 

Since this is to hold for all ~, we must have 

[ ~ , ~ ] = 0  (11) 

To satisfy (11), oa must be a multiple of one generator of SU(3,2), e.g., 
w = %e  i, where ei is one of the generators of SU(3,2) and ~o is a 1-form. 

Clearly, further conditions must be placed on the oa--perhaps we 
should demand that they be connection 1-forms on an appropriate bundle. 

The sections of A ( M , G ' )  can be completed to form a Hilbert space 
(with indefinite metric). 

In this Hilbert space we have a duality mapping (*) which is the 
extension to Lie algebra valued forms of the standard Hodge star operator 
(Bleecker, 1981). 

If we view quantization as the requirement that only the eigenstates of 
a set of operators corresponding to the observables can appear, then we 
must require that the sections be eigenforms of all the operators which 
appear naturally. Thus we are regarding the quantum numbers as the 
spectrum of an appropriate complex. 

We already have the Hodge * operator which has eigenvalues + 1 on 
even forms and - 1  on odd forms. Thus we must have that r is odd 
(fermion) or even (boson). 

Other operators appear from the complex (A" = A'(M, G')): 

*0 
A o --, A 4 

*1 
A~ __, A 3 

*2 
A 2 ~ A 2 (12) 

"3 
A3 __, A~ 

*4 
A4 --, A0 
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where 8,~8 = - [ t o ,  O], and to is required to satisfy (11). If 8 E A r, we do a 
diagram chase around the two closed loops and sum: 

a d = + 

For the complex (12) this is the analog of the Laplace Beltrami operator. 
So we see that the observables of the particle @ will be the eigenvalues 

of the operators A 

= (13)  

for toi satisfying (11). 
If, in (5) we take 3 -- d the quantization condition (13) becomes 

Taking ~ = - m 2 this reads 

A@ = - m2@ (14) 

Because of the indefinite metric on the base space (14) is the Klein-Gordon 
equation. Thus mass is a quantum number of an interaction which involves 
gravitation which is where mass should come from. Clearly the spectrum of 
(14) is continuous as the mass spectrum should be. 

The spectrum of (13) is basically the spectrum of the matrix represent- 
ing e, and so will be discrete. Noether's theorem tells us to that each 
generator of SU(3,2), there is a conserved quantity, (13) tells us how to 
quantize that quantity. The eigenvatues in (13) are the squares of the 
eigenvalues of these matrices. Again they are negative definite 

and the 3'i are the quantum numbers of the particles. 
The possible supersymmetry operators (Witten, 1982) in this setting are 

Q0 = d + *d* 

Q,~ = -  [ ~ , - * [ ~ , *  

and 

Qo - Q~, = D~ + *D,~* 

where to satisfies the condition (11). 
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Other connections with previous work should be noted: 
(1) The real part of-the Lie algebra su(3,2) is the de Sitter algebra 

so (3, 2). 
(2) Penrose's theory of twistors 1 is based on the Lie group SU(2,2): we 

are increasing the number of space dimension by 1. 
(3) The chronometric theory of I. E. Segal (1976) is based on analysis of 

0(3,2) and SU(2, 2). Evidently the SU(3,2) theory will require an extension 
of Segars work. 

(4) F. Gi~rsey (1981) has investigated Hermitian symmetric spaces in 
other models. 

(5) J. W. Moffat (1981) has proposed a theory of gravitation using the 
groups U(i, j)  but he does not specify what i and j should be. 

4. DISCUSSION AND SUGGESTIONS FOR FURTHER 
RESEARCH 

SU(3, 2) has many features which indicate that it is the proper group to 
gauge for grand unification. First, it is the unique simple group containing 
the Lorentz group whose maximal compact subgroup is SU(3)x SU(2)X 
U(1). Second, SU(3,2) can be soldered to a complex space-time. Soldering 
is the most natural, if not the only, way in which the geometry on the 
bundle can influence the geometry on the base. 

The extra dimensions have a natural interpretation. Just as gravitation 
is the curvature of space-time, the other forces appear here as curvatures in 
the higher dimensions. Since a particle is Lie algebra valued form, it may, or 
may not have components in these extra dimensions. If it does, it feels the 
curvature and reacts accordingly. If it does not extend into these dimen- 
sions, it does not feel the forces. 

The quantization scheme introduced in Section 3 is pure geometry. This 
was Einstein's vision--to obtain quantum theory from the geometry. The 
interaction of A, which generates the mass spectrum, with the A,o, which 
generate the other quantum numbers could possibly explain particle genera- 
tions. Only further research will tell. 

The idea of obtaining supersymmetries from the representation on 
A (M, G') appears to be new. Our approach could be summarized as "gauge, 
then super," whereas the standard approach is to "super then gauge." The 
standard approach adds an arbitrary number of super generators to the 
standard generators. Again only time and further research will tell the full 
story. 

There is a C* algebra lurking in the background. Using a normalized 
Hodge star operator as the * operator for the C* algebra, we can consider 

tFor a current review see Hughston and Ward (1979). 
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the C* algebra generated by *, d, and 8,~ for admissible w. So even if 
SU(3,2) is the correct group to gauge, there are many more questions left 
than have been answered. That is one of the greatest joys of research! 

Obviously, the next step is to generate all the numbers that this theory 
is capable of producing. Hopefully I will report on these numbers at the 
Third New Orleans Conference on Quantum Theory and Gravitation. But 
there is one prediction immediate from the theory. 

In the SU(5) theory, the "extra" generators tacked onto SU(3)• SU(2) 
• U(1) are compact. The presence of these compact generators leads to the 
necessity of introducing superheavy particles which interact via exotic forces 
which lead to proton decay. The extra generators in SU(3,2) are not 
compact, do not lead to superheavy particles nor exotic forces (unless 
gravitation is considered exotic). Without this mechanism there is no 
reasonable way for protons to decay. So in the SU(3,2) gauge theory, 
protons are stable. 
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